## **Selection for Disease Resistance**

### Gert Pedersen Aamand Nordic Cattle Genetic Evaluation









## Why breeding for resistance?

- Low heritability
- Expensive registration system

### However:

- Large genetic variability
- Reasonable reliability (large daughter groups, genomic selection)

Breeding is a strong tool!





## **Selection for Disease Resistance**

- 1. Introduction
- 2. Data collection
- 3. Genetic evaluation
- 4. Breeding goal
- 5. Genetic progress
- 6. Final remarks and conclusion





## **Disease - health**

- Reduce animal welfare
- Economic losses for farmers extra costs:
  - Veterinarian treatments
  - Labour
  - Decreased production
  - Discarded milk
  - Involuntary culling





### Disease - health

### An improvement of health is desirable:

- From a general ethical point of view
- As it leads to increase consumer acceptance
- It is of economic importance to the farmer





### Disease - health

An improvement of health can be reached by:

Managementand

- Genetic

A good registration system is essential for both management and genetic improvements





## Frequencies udder diseases, Denmark

| Breed    | 1st lact<br>Day 0-50 | 1st lact<br>Day 51-305 | 3rd lact |
|----------|----------------------|------------------------|----------|
| RDC      | 14.3                 | 10.4                   | 22.2     |
| Holstein | 12.1                 | 11.9                   | 25.9     |
| Jersey   | 18.4                 | 9.2                    | 27.3     |





## Frequencies claw diseases, Denmark

| Breed    | 1st lact | 3rd lact |
|----------|----------|----------|
| RDC      | 37.2     | 45.5     |
| Holstein | 52.2     | 56.0     |
| Jersey   | 25.7     | 29.7     |

Holstein has room for genetic improvement





## Disease recording

- Registrations
  - User friendly systems important
  - Transfer from invoicing systems or by use of electronic data processing software (disk top, PDA, smart phone)
  - Data check so double registrations are avoided





## Systematic disease recording in general

- Started before 1985 in Norway, Sweden and Finland
- Started in Denmark in 1990 in cooperation between Danish Cattle Federation and the Danish Veterinary Society
- After 2006 registration has started in e.g.
   Austria, Canada, France, UK.....





## Claw disease registration

- Denmark, Sweden, Finland and Norway
  - Joint definition of claw disease traits
  - Joint registration system (touch screen ready 2010)
  - Data stored on four national databases







## Building a disease registration system

- Recording can improve management today and ensure accuracy of selection for tomorrow
- Made possible by ongoing farmers' participation
- Nordic claw recording is a nice example started in 2010 – today 40% of all Danish herds participate

## Disease recording

- Recordings can be made by
  - Herd managers
  - Veterinarians
  - Claw trimmers





### **Cow database**



Data flow in relation to central database





## Disease recording system

- More than 80 different disease codes are used to describe the diagnoses
- For breeding purposes the codes are pooled within four categories:
  - Udder diseases
  - Reproductive diseases
  - Digestive and metabolic diseases
    - Feet and leg diseases



### Traits used in EBV udder health

- Udder health breeding goal traits:
  - Clinical mastitis day -15 to 50 1st lact
  - Clinical mastitis day 50 to 305 1st lact
  - Clinical mastitis day -15 to 150 2nd lact
  - Clinical mastitis day -15 to 150 3rd lact

EBV udder health

- Udder health indicator traits
  - TestDay SCC 1-3 lactation
  - UA Fore udder attachment
    - **UD** Udder depth



## Udder health Genetic parameters

- Clinical mastitis show a substantial genetic variation
- Heritabilities

| _ | Clinical | mastitis | 4% |
|---|----------|----------|----|
|   | <b>O</b> |          |    |

- SCC 13%

Udder conformation 25%





## **Udder health Genetic parameters**

### Genetic correlations:

– CM different lactations 0.70-0.95

- CM-SCC 0.60

- CM udder conformation 0.35-0.50





### **Udder health**

Reliability (r<sub>IA</sub><sup>2</sup>)

- Udder health in theory
  - Based on CM max 100%
  - Based on SCC max 36% ( $r_g^2$ )
- Udder health in practice (Nordic countries)
  - 40% first proof same time as production
  - 65-75% based on 1st lact daughters





## Effect of EBV for udder health

|                                          | Percentage of daughters with mastitis |            |
|------------------------------------------|---------------------------------------|------------|
| Grouped sires after EBV for udder health | 1st parity                            | 3rd parity |
| TOP5 (poorest)                           | 21.7%                                 | 28.9%      |
| TOP4                                     | 18.3%                                 | 26.0%      |
| TOP3 (mean)                              | 15.3%                                 | 23.8%      |
| TOP2                                     | 13.9%                                 | 21.0%      |
| TOP1 (best)                              | 10.7%                                 | 17.0%      |





## Other health traits Diagnoses

- Reproductive diseases
- Metabolic and digestive diseases
- Feet and leg diseases (vet treatments)

1-3 lactation used in EBV





## Other health traits Genetic parameters/reliabilities

- Heritabilities 1-3%
- Moderate positive correlations among disease traits
- Based on 1st batch daughters r<sub>IA</sub><sup>2</sup> 55-65%





## Claw diseases

### Infection related

- Dermatitis
- Heel Horn Erosion
- Skin Proliferation

### Metabolic related

- Sole Haemorrhage
- Sole Ulcer
- White line separation+ double sole

Heritabilities 4-6%

Heritabilities 2-6%



Cork screw claws



## **Genetic correlations**

| Between                  | Range   |
|--------------------------|---------|
| Infection related traits | 0.3-0.9 |
| Feed related traits      | 0.2-0.9 |

| Between                                   | Range       |
|-------------------------------------------|-------------|
| Infection related and feed related traits | -0.2 to 0.3 |

| Between                            | Range     |
|------------------------------------|-----------|
| Same trait in different lactations | 0.80-0.99 |





## Claw trait definition and EBV

- 7 traits per lactation
- 3 lactations

21 traits

Economical weights used to calculate EBV for Claw health







## Correlations between EBVs for health

|              | Claw health | Resistance<br>Other diseases |
|--------------|-------------|------------------------------|
| Udder health | 0.20        | 0.29                         |
| Claw health  | -           | 0.25                         |

Birth year 2005-07

Positive correlations between health traits!







### **Total Merit Index**



- Economically important traits should be included to ensure maximum progress (and balanced progress)
- More efficient to strive for progress in many traits simultaneously – compared to large gains in few traits with other negative consequences





## **Correlation between NTM and**

single traits



Birth year 2005-2007



| 0.62 |
|------|
| 0.12 |
| 0.42 |
| 0.34 |
| 0.25 |
| 0.48 |
| 0.46 |
| 0.34 |
| 0.23 |
| 0.19 |
| 0.04 |
| 0.03 |
| 0.68 |
|      |

1.00 = selection for yield only

Positive response all traits



# +25 NTM Genetic progress per traits





|                |             | +25 NTM units    |
|----------------|-------------|------------------|
| Holstein       | Correlation | response single  |
|                |             | traits           |
| Yield          | 0.62        | 15.5 index units |
| Growth         | 0.12        | 3.0              |
| Fertility      | 0.42        | 6.3              |
| Birth index    | 0.34        | 3.0              |
| Calving index  | 0.25        | 8.5              |
| Udder health   | 0.48        | 12.0             |
| Other diseases | 0.46        | 11.5             |
| Claw health    | 0.34        | 8.5              |
| Feet and legs  | 0.23        | 5.8              |
| Mammary        | 0.19        | 4.8              |
| system         |             |                  |
| Milk ability   | 0.04        | 1.0              |
| Temperament    | 0.03        | 0.8              |
| Longevity      | 0.68        | 17.0             |

## 10 years efficient cattle breeding



### +25 NTM units give

| Trait       | Kg   |
|-------------|------|
| Milk, kg    | 496  |
| Fat, kg     | 26.7 |
| Protein, kg | 18.9 |





## 10 years efficient cattle breeding



+25 NTM units give

| Trait                | Mastitis cases                                      | Other disease, |
|----------------------|-----------------------------------------------------|----------------|
|                      |                                                     | cases          |
| 1 <sup>st</sup> lact | - 5.8 <sup>day0-50</sup> - 3.4 <sup>day50-305</sup> | -6.2           |
| 2 <sup>nd</sup> lact | - 8.0                                               | -6.2           |
| 3 <sup>rd</sup> lact | - 9.2                                               | -8.2           |

Without NTM – frequency of mastitis and other diseases will increase!!!



## Does a TMI (NTM) fit all farms?



- Economic values have to be the best guess on future production circumstances (5-10 years ahead)
- A breeding goal has to be jointly for the population/breed





## Does NTM fit all farms?



- The production circumstances might vary a little among farms – different management level and production circumstances
- NTM will ensure a balanced genetic progress the functional/health traits have effect in all herds!





## Effect of NTM selection in practice on health traits

### Within herd comparisons

- 60 large Danish herds
  - Cows born 2006-2007



- I NTM under herd mean
- II NTM over herd mean
- Looked at differences in performance in 2009-2011





## TMI selection has positive effect on health traits

Difference NTM group over average versus NTM group below average within herd. Total 60 Danish herds

| Trait                      | 1st lact, kg | 2 <sup>nd</sup> lact, kg |
|----------------------------|--------------|--------------------------|
| Protein                    | +13 kg       | +12 kg                   |
| First to last insemination | - 5 day      | - 3 days                 |
| Longevity                  | + 5%         | + 8%                     |
| Mastitis                   | - 2%         | - 2%                     |

## Health traits and genomic selection









## Genomic selection and breeding goal



 The economic values are the same with and without genomic selection

 But the response we get in the different traits will be different





## Reliabilities EBV/GEBV



- Traditional
  - Bulls: protein >> health traits
  - Females: protein >>> health traits
- Genomic Selection
  - Bulls: protein > health traits
  - Females: protein > health traits





## Relative genetic progress

| Breeding scheme   | Total response | Response protein | Functional traits |
|-------------------|----------------|------------------|-------------------|
| Progeny test      | 100            | 100              | 100               |
| GS + Progeny test | 129            | 113              | 161               |
| GS                | 201            | 169              | 273               |

Buch et al 2011





## Reliability GEBV for health traits

- Key factors
  - A good registration system
  - A lot of reference animals with information
  - A young registration system require genotyped females to be effective
    - E.g. Nordic countries have 2,000 reference bulls for claw health but >20,000 for production traits





## **Conclusion - health traits**

- Economical important
- Large genetic variation
- Positive genetic correlation between health traits
- Including in breeding goal important to maximize genetic progress - balanced genetic progress







## **Conclusion - health traits**

- Genomic selection can give a more balanced genetic progress
- The underlying "gold" is the farmers own accurate registrations of health traits – a good registration system is essential





